Next Meeting:

PACIFIC: JUNE 14/15 2022

Premier Session

14/15 JUNE

 🇺🇸  20.30pm New York (day before)
🇬🇧  1.30am London
🇯🇵  10.30am Tokyo

Check here what time and date it is in your timezone
Add the PACIFIC event to your calendar

Second Session


🇺🇸 10.00am New York
🇬🇧 15.00pm London
🇯🇵 00.00am Tokyo (day after)

Check here what time and date it is in your timezone
Add the ATLANTIC event to your calendar


Toward the development of defined microbial therapeutics


Kenya Honda received his M.D. from Kobe University and his PhD from Kyoto University. He has been Assistant Professor at the Universities of Tokyo and Osaka, and is now Professor at the Department of Microbiology and Immunology at the Keio University School of Medicine in Tokyo and Team Leader of the Laboratory for Gut Homeostasis at RIKEN. He is also Scientific advisor for Vedanta Bioscience and 4Bio Capital, and an editor for a number of Journals. Prof. Honda has received a number of awards, including the NISTEP Award, the Gottfried Wagener Prize, the JSI award, the Inoue Prize for Science, the Academic Award of the Mochida Memorial Foundation, the Bäelz award, and the Carlos J. Finlay UNESCO Prize for Microbiology. From 2014 to 2021, he has been named by Clarivate Analytics in the list of “Highly Cited Researchers”. Prof. Honda’s lab research focuses on the gut microbiota-immune cells interactions in humans, rodents, and non-human primates, with the final aim of identifying bacterial species that influence the host immune cells to develop therapeutic interventions for a wide-array of intestinal dysibiosis, such as inflammatory bowel disease, auto-immune diseases, and allergy.

Abstract Trillions of microorganisms transit through and reside in the mammalian gastrointestinal tract each day, collectively producing thousands of small molecules and metabolites with local and systemic effects on host physiology. Identifying effector microorganisms that causally affect host phenotype and deciphering the underlying mechanisms have become foci of microbiome research and have begun to enable the development of microbiota-based therapeutics. Two complementary, reductionist approaches have commonly been used: the first starts with a specific phenotype (such as immune cell induction) and narrows down the microbiota to identify responsible effector bacteria, while the second starts with bacteria-derived molecules and metabolites and seeks to understand their effects on the human physiology. Together, these strategies provide the basis for the rational design of microbiota-targeted therapeutics to ameliorate specific diseases and conditions.


Influence of host genetics in shaping the rumen bacterial community in beef cattle

Waseem Abbas

University of Nebraska-Lincoln, Lincoln, NE, USA

See the abstract!

The infant gut commensal Bacteroides dorei presents a generalized transcriptional response to various Human Milk Oligosaccharides

Sivan Kijner

Faculty of Medicine, The Hebrew University of Jerusalem, Israel

See the abstract!

Two Competing Guilds as a Core Microbiome Signature for Chronic Diseases

Liping Zhao

Rutgers University, New Jersey, USA

See the abstract!

Human Milk Oligosaccharide Utilization in Intestinal Bifidobacteria is Governed by a Global Transcriptional Regulator NagR

Aleksandr Arzamasov

Sanford Burnham Prebys Medical Discovery Institute, California, USA

See the abstract!

Microbiome Virtual International Forum